Halogen bulb failure issue

MichaelB

Give me a museum and I'll fill it. (Picasso) Give me a forum ...
Site Team
Joined
Jan 31, 2008
Messages
40,741
Location
Chicagoland
I have a ceiling fan with a halogen light. The bulb burned out yesterday for the third time since June. The fan specs call for a 100W bulb, I use 75W, so heat is probably not the issue. Any thoughts what would be causing this premature bulb failure?
 
Avoid fingerprints. Handle bulb with gloves.

+1

You might also try cleaning the bulb with alcohol before installing it. (No, don't use Jack Daniels...)

Ok. I thought I was being careful but used a handkerchief and am not absolutely certain my naked hand didn't come in contact with the bulb. Would a little contact be enough to cause the bulb to burn out like that?

BYW, I'd never use Jack Daniels .. too expensive. OTOH, I do have some Costco vodka downstairs. :)

Seriously, I take it any residue of any kind on the surface of the bulb shortens the lifespan?
 
Seriously, I take it any residue of any kind on the surface of the bulb shortens the lifespan?

TL ; DR : If fingerprint discoloration isn't obvious, the most likely failure is from line voltage being higher than what the bulb is designed for. A dimmer might help.

Yup. The residue from fingerprint oils or similar stuff on a quartz bulb will become very hot when the lamp is on. That will char the oils to become black. Any trace of light absorbing material on the quartz bulb leads to additional heating at that spot, which can produce failure through overheating, cracking or even blistering of the quartz. The bulb material will look 'funny' in the contaminated area, with some sort of discoloration or marking.

I've pulled bulbs that had a nice fingertip-sized bump with a black fingerprint showing.

Halogen lamps made using some specialized glass don't have this particular problem, but may still discolor from contamination.

This isn't the only way halogen lamps fail, though. The most common failures are simple filament burnout. The act of switching a lamp on rapidly heats the filament material, which places a stress on it. The initial current drawn by the cold filament is much higher than that drawn when hot. (As temperature rises, the filament resistance rises.) That in itself is not a big deal, but over time, as the lamp ages, the filament may lose metal from evaporation and develop a thin spot. Eventually a thin spot will mechanically fail from the temperature change when switched on.

The halogen lamp tries to run at a very high temperature, while prolonging the life of the filament with a nifty chemical reaction. The filament tungsten that evaporates would normally deposit on the inside of the quartz or glass envelope. The halogen reacts with the tungsten vapor at the moderate temperature near the envelope, preventing it from depositing to form that black coating seen in conventional bulbs. The tungsten halide compound breaks down at the very high temperature of the filament itself, re-depositing the tungsten metal onto the filament. The gotcha is that the tungsten doesn't necessarily re-deposit where it came from, so the filament can still develop thin spots.

The halogen concentration is picked to match the rate the tungsten evaporates at for the lamps designed voltage. At a slightly low voltage, the tungsten evaporation rate may be lower than the halogen gas pressure was picked for, and the halogen cycle won't regenerate the filament properly. This leads to early bulb failure.

At greatly reduced voltage, as with a light dimmer turned down, there isn't much evaporation from the filament, and the bulb won't blacken very much in spite of the halogen cycle not working. Bulb life is extended, although not as much as the old incandescent lamps would see. Effectively a dimmed halogen bulb is just a tiny incandescent lamp in this condition.

At a voltage above the design point, the lamp life becomes shorter due to the higher rate of evaporation of tungsten. The amount of halogen may not be sufficient to match the evaporation rate, leading to blackening of the envelope and eventual failure of the filament. Wikipedia says the lamp life is proportional to
958b517d07991f360cb8b70002c5fdc3.png
, and a 5% boost to voltage will cut the lamp life in half.

Lots more here, including pretty pictures:
ZEISS Microscopy Online Campus | Tungsten-Halogen Lamps
 
I kept having halogen floodlights in the back yard light burn out after only a few months, and it was a pain to replace them.

I finally broke down and replaced them both with LED floodlights. Yes, they were expensive (about $35 each IIRC) but it's been worth it. They've both gone over a year now with no replacements, and based on LED longevity, could probably go years more.

I'm sold...whenever an incandescent or halogen bulb burns out, I'm replacing it with LED. Avoiding the hassle of replacing bulbs every time I turn around is worth the added cost.
 
I kept having halogen floodlights in the back yard light burn out after only a few months, and it was a pain to replace them.

I finally broke down and replaced them both with LED floodlights. Yes, they were expensive (about $35 each IIRC) but it's been worth it. They've both gone over a year now with no replacements, and based on LED longevity, could probably go years more.

I'm sold...whenever an incandescent or halogen bulb burns out, I'm replacing it with LED. Avoiding the hassle of replacing bulbs every time I turn around is worth the added cost.

While the LED component has a long life, the circuitry may die much sooner. One of the big issues is some of the capacitors fail at the higher temperatures internal to the device, maybe in the range of 2,000 hours.

Unfortunately, the published 'lifetime' spec is based on the rate that the device dims, not on the component life itself.

-ERD50
 
I just think some halogen bulbs are made junky. I had three different bulbs burn out in about four weeks time, while the original lasted over a year. In the same fixture.
The replacements were from Lowe's.

The solution, remove the special halogen socket from the light fixture, install a regular socket, screw in a LED bulb, It has been good for the last 7 months. Did measure line voltage, while the halogens were failing, 120 pretty steady.

As a side note, I had a few 5 Watt 12 VDC cfl Edison base bulbs fail in a few months time. The replacements are darn expensive. The fix. Discard the CFL glass part. Save the electronics which is 12 volt inverter. Connect the theoutput to a 12" fluorescent tube. And there was light. They do take a bit of time to come full brightness when cabin temp is around 30 F.

A year later they still work just fine. Even though one of them is just hanging by wires from a nail banged into a rafter at the mancave. Can you say rustic?
 
Last edited:
Back
Top Bottom